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What is trigger-level analysis?
The trigger is a fact of life—we cannot record all of collision data, even if we wanted 
to do this. 

In traditional "offline" analysis, we see only the events that survived the trigger, and 
live with the limitations. For example, pT thresholds are sometimes higher than we 
would like; we may miss a discovery because we don't trigger on the events; etc. At 
ATLAS and CMS, these limitations prevent an exhaustive exploration of the 
electroweak scale! 

However, the trigger system sees all the events. It performs real-time (or almost-
real-time) analysis. In recent years (and especially for future upgrades), even the 
initial stages of these systems are becoming powerful enough to think about using 
them for serious analysis without reducing analysis sensitivity or introducing biases. 

This allows real-time (or “trigger-level”) analysis, where the trigger does not simply 
perform a decision but instead records an intermediate data reduction (trigger-level 
objects or partial event data) or even the final observables. 

Initial implementations of this idea are already in use with ATLAS (“TLA”), CMS 
(“data scouting”), and LHCb (“turbo stream”, “Tesla”) and have been used for 
physics publications, primarily focused on the last stage of the trigger, reducing the 
data read out for each event to increase the event rate (at fixed bandwidth).

2
 

 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults
https://twiki.cern.ch/twiki/pub/AtlasPublic/ApprovedPlotsDAQ


Opportunities for trigger-level analyses
These first publications are “proof of principle” and are now being followed up with 
more ambitious ideas.  

In the near-term (LHC Run 3), improvements to the trigger hardware and software 
make new things possible. For example, ATLAS will have a larger online CPU farm 
capable of running tracking for a much larger rate of events, and have partial readout of 
full-detector information around regions of interest. This will allow better pile-up 
mitigation, object calibration and resolution (e.g. jets), blended on-line and offline 
analysis (e.g. b- tagging), and other improvements. These will allow even lower 
momentum thresholds for the analyses done so far, and make new channels possible 
(e.g. low-mass scalar resonances decaying to jets, photons). 

For the HL-LHC, more sophisticated trigger hardware (such as “global” trigger 
hardware, hardware track processors) make bypassing even the hardware-level trigger 
decision a possibility. For example, CMS is planning a 40 MHz scouting for the L1 
system in Phase-2 and exploring dedicated hardware for ML-based anomaly detection.  

These analyses are attractive projects especially for hardware and software developers, 
who are best positioned to take advantage of over-dimensioned systems.
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Experimental challenges for trigger-level analysis
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Huge backgrounds and small signal can require precision control of all aspects 
of the analysis. This is difficult to achieve in the online environment, especially 
in a hardware system. 

Real-time analyses requires a separate data handling pipeline (custom 
reconstruction for partial data, data quality, calibrations, analysis framework, 
etc.) 

Advances are needed in reliable machine learning application in the trigger, 
especially for analysis. Offline reconstruction relies more and more on ML 
(e.g. b-tagging, tracking?). What aspects of this can migrate to the online 
environment, where calibrations may not be as sophisticated? How to ensure a 
strong correlation with offline algorithms? 

Further work is needed on compression, flexible custom data formats, and 
toolkits for real-time detector calibration. It needs to be easier for non-expert 
offline analysts to design and deploy these techniques without the deep expert 
knowledge that they currently require. 

Can we someday port a full offline analysis chain into the trigger and readout?  
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Further reading
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Additional slides



Overview of ATLAS trigger system during Run-2
The trigger system for ATLAS during Run 2 consisted of a L1 hardware system 
(accepting 100 kHz) and an HLT software system (accepting ~1 kHz of physics 
triggers). 

Along with other upgrades to the L1 system, it also featured a L1Topo processor 
(allowing topological algorithms such as selection on angular distance between 
two L1 jets) and an upgraded CTP (providing e.g. more room for topo- and 
analysis-specific L1 items).
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ATLAS trigger menu largely driven by inclusive triggers generically useful to 
many analyses and recorded in a “main” stream. Average 1 kHz and 1 MB/event. 

Additional flavour physics streams: dedicated triggers, can use delayed/custom 
reconstruction, or partial-event readout (e.g. only subdetectors in 1.5✕1.5 area 
around a track satisfying pre-selection). Non-PE stream averages 200 Hz and 
1 MB/event. 

Trigger-Level Analysis stream: stores HLT reconstruction only. Discussed in this 
talk. Recorded up to 26 kHz peak rate at an average 5 kB/event.  

In 2018, 32 streams total:  about half with full event information, half with partial 
event building (PEB).
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Trigger menu limitations during Run 2
Main menu limitations are L1 rate (multi-jet, taus, flavour physics), HLT CPU 
(b-tagging of low-pT jets), and HLT rate (most triggers).
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L1


Readout electronics set a hard limit of 100 kHz. 

Peak rate ~95 kHz. 

Strong production (multi-)jet and flavour-physics triggers would quickly 
saturate this, without additional requirements (e.g. single-jet pT thresholds)

HLT CPU


Processing power of HLT farm sets hard limit on what reconstruction can be run 

Typically: pre-selection then offline-like (but speed-optimized) reconstruction 

In particular, tracking is not performed for jet triggers (and for low-pT b-jet 
candidates)

HLT rate


Soft limit of average 1 kHz from data storage, 
processing, and maintenance needs 

Jet triggers ~15% of total (~150–250 Hz) 

Single-jet triggers only unprescaled and fully 
efficient for offline pT>~440 GeV 
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Data for light jets 
~200–440 GeV 
has full HLT jet 
reconstruction but 
is thrown away 
because we don’t 
have space to store 
the full event.
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Why bother with “low pT” jet data?
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Two-body resonances are a historically 
fruitful search channel (J/psi, Z, Higgs) 
and a key component of the ATLAS 
search program. They are well-covered 
for most types of decays. 

However, the HLT threshold for the single 
jet trigger (440 GeV) constrains dijet 
searches to the region mjj>~ 1.5 TeV (~2x 
pT).


The electroweak–TeV scale is special! The 
W, Z, Higgs, and top are all found there. 
We must study it as thoroughly as we can. 
Not even SM-like couplings (few * 0.01) 
are reached by the most sensitive search. 

With a variety of alternate triggering 
strategies or more narrowly targeted 
searches, ATLAS can cover a wider range 
of dijet masses, but with much less 
statistical power than the full data would 
allow. 

We have to do better!

Summary plots from the ATLAS Exotic physics group

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html


Trigger-level analysis
To generically probe the entire range of EW–TeV dijet resonances with the full statistical power 
of the data, we need to work around all three trigger limitations (L1, HLT CPU, HLT rate). 

This can only be done within the trigger itself, i.e. trigger-level analysis (TLA).
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~3 kHz

~3 kHz

~0.025 kHz

Difference between L1 and HLT thresholds (200–440 GeV, shown earlier) suggests a first 
step for Run 2: improve (already good) and analyze the HLT jet reconstruction at the L1A 
rate; throw out the full data. 

This technique also employed at LHCb (turbo stream) and CMS (data scouting). 

TLA stream records only HLT objects (jet four-vectors, jet ID and calibration variables, etc.) 
for specific L1A. 

Throw out other information (e.g. no tracking information kept in Run 2,  
but 0.5% of full event size.)
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TLA results from first 1/4 of Run 2
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Analysis of two mass ranges with different L1 triggers (75 & 100 GeV) and different angular (y*) cuts. 

Factor of 2–5x improvement in coupling limits (roughly 1–2 orders of magnitude in cross section). 

Does not yet use strategies for other trigger limitations. 

Watch for improved results with the full Run 2 dataset!
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Challenges of TLA in Run 2
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Huge background and small signal 
requires very precise control of all aspects 
of the analysis.   

Partial-event data requires a separate data 
handling pipeline (non-standard 
reconstruction, data cleaning, HLT object 
calibrations, etc.) 

Without tracking, pile-up suppression is 
difficult for low-pT jets.  [GeV]jjm
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Example: Custom jet calibration
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Trigger-level analysis in Run 2
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LHC long term schedule 
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2014

LHC long term schedule 

TLA 
implemented in 

2013–2014 
see Eur. Phys. J. 
C (2017) 77:317

First TLA 
result with 

L1_J75 (3/fb) Substantial 
work on HLT 
jet calibration

First TLA 
publication with 

L1_J75 and 
L1_J100 (30/fb) 

see PRL 121 
081801

Final Run 2 jet 
calibrations  and 

analyses underway

Run 3 
preparations

+

L1 rate remains most significant limitation


Two initial strategies explored for L1 limits: 
topological trigger and end-of-fill. 

L1Topo processor allows angular cuts 
(pseudorapidity difference) to suppress main 
search background (t-channel dijet 
production). 

Opportunistic end-of-fill triggers with lower 
L1 thresholds, in special situations using the 
majority of the L1 bandwidth.
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Outlook for Run-3 and HL-LHC
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Run 3 will bring several relevant improvements to the trigger hardware and software


Better HLT object calibration and resolution  

Possibility of particle-flow jets for Run-3 (better jet resolution at low pT) 

Pile-up mitigation for better control of lower-momentum (~<100 GeV) jets 

Possible software tracking for rejection of pile-up for lower-momentum jets; 
additional objects 

Improved software flexibility for partial-event readout 

Improved performance with new L1 hardware 

HL-LHC 


Powerful first-stage trigger capabilities with L0 Global Trigger upgrade and  
HLT Hardware Track Trigger 

Storage and computing pressures increase  

but TLA also offers a solution, at least for some types of standard physics analyses 

For details on these and further ideas, see also ATL-DAQ-PUB-2017-003 and related 
HSF-CWP-2017-01.

https://cds.cern.ch/record/2295739/files/ATL-DAQ-PUB-2017-003.pdf
https://arxiv.org/pdf/1802.08640.pdf

